Dynamic High Frequency Trading: A Neuro-Evolutionary Approach
نویسندگان
چکیده
Neuro-evolution of augmenting topologies (NEAT) is a recently developed neuro-evolutionary algorithm. This study uses NEAT to evolve dynamic trading agents for the German Bond Futures Market. High frequency data for three German Bond Futures is used to train and test the agents. Four fitness functions are tested and their out of sample performance is presented. The results suggest the methodology can outperform a random agent. However, while some structure was found in the data, the agents fail to yield positive returns when realistic transaction costs are included. A number of avenues of future work are indicated.
منابع مشابه
Intraday high-frequency FX trading with adaptive neuro-fuzzy inference systems
This paper introduces an adaptive neuro-fuzzy inference system (ANFIS) for financial trading, which learns to predict price movements from training data consisting of intraday tick data sampled at high frequency. The empirical data used in our investigation are five-minute mid-price time series from FX markets. The ANFIS optimisation involves back-testing as well as varying the number of epochs...
متن کاملAdaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model
The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which ...
متن کاملImproving risk-adjusted performance in high-frequency trading: the role of fuzzy logic systems
In recent years, algorithmic and high-frequency trading have been the subject of increasing risk concerns. A general theme that we adopt in this thesis is that trading practitioners are predominantly interested in risk-adjusted performance. Likewise, regulators are demanding stricter risk controls. First, we scrutinise conventional AI model design approaches with the aim to increase the risk-ad...
متن کاملDesign of robust carrier tracking systems in high dynamic and high noise conditions, with emphasis on neuro-fuzzy controller
The robust carrier tracking is defined as the ability of a receiver to determine the phase and frequency of the input carrier signal in unusual conditions such as signal loss, input signal fading, high receiver dynamic, or other destructive effects of propagation. An implementation of tight tracking can be understood in terms of adopting a very narrow loop bandwidth that contradict with the req...
متن کاملAn Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment
The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves t...
متن کامل